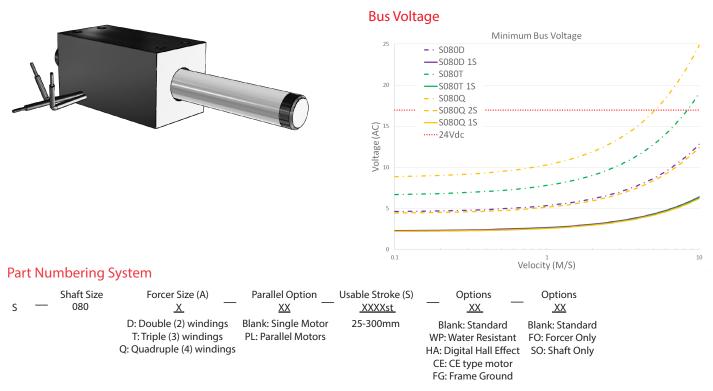
Visit nipponpulse.com to download 3D CAD drawings and 2D prints of this motor.

	SOS	30D	SO	30T		S080Q	
Electrical Specs	S080D	S080D 1S	S080T	S080T 1S	S080Q	S080Q 2S	S080Q 1S
Continuous Force ¹	1.8N ((0.4lbs)	2.7N (0).61lbs)		3.5N (0.79lbs)	
Continuous Current ¹	0.84Arms	1.7Arms	0.84Arms	2.5Arms	0.84Arms	1.7Arms	3.4Arms
Acceleration Force ²	7.2N (1.6lbs)	11N (2	2.4lbs)		14N (3.1lbs)	
Acceleration Current ²	3.4Arms	6.7Arms	3.4Arms	10Arms	3.4Arms	6.7Arms	13Arms
Force Constant (K _f)	2.1N/Arms (0.48lbs/amp)	1.1N/Arms (0.25lbs/amp)	3.2N/Arms (0.72lbs/amp)	1.1N/Arms (0.25lbs/amp)	4.2N/Arms (0.94lbs/amp)	2.1N/Arms (0.47lbs/amp)	1.0N/Arms (0.22lbs/amp)
Back EMF (K _e)	0.71V/m/s (0.02V/in/s)	0.36V/m/s (0.01V/in/s)	1.1V/m/s (0.03V/in/s)	0.36V/m/s (0.01V/in/s)	1.4V/m/s (0.04V/in/s)	0.70V/m/s (0.02V/in/s)	0.35V/m/s (0.01V/in/s)
Resistance 25°C, ³	4.7Ω	1.2Ω	6.8Ω	0.76Ω	9.0Ω	2.3Ω	0.56Ω
Inductance ³	0.7mH	0.18mH	1.0mH	0.11mH	1.3mH	0.33mH	0.081mH
Electric Time Constant	0.149ms		0.14	7ms		0.144ms	
Max. Rated Voltage (AC)	240V						
Fundamental Motor Constant (K _m)	0.98N√W		1.23N√W 1.39N√W				
Magnetic Pitch (North-North)	30mm (1.18in)						

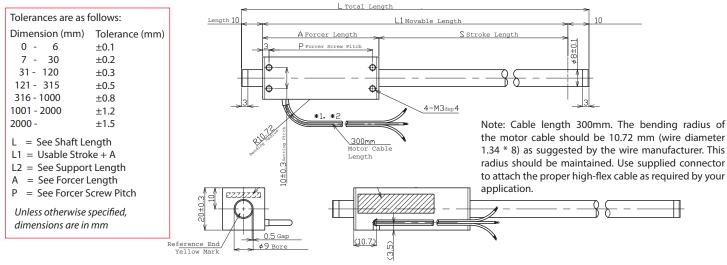
Is this the proper Linear Shaft Motor for your application? Use our SMART sizing program to assist in your decision.

This motor can be customized to fit your application demands; contact your application engineer for more information.

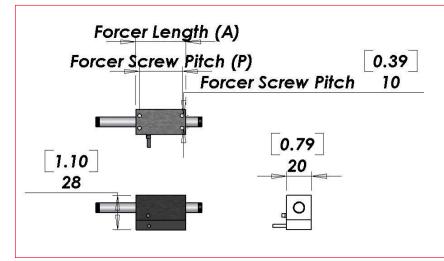

¹ Based on a temp rise of coil surface of 110°K over 25°C ambient temperature stalled forcer, and no external cooling or heat sinking.

² Can be maintained for a maximum of 40 seconds. Higher forces and current possible for short periods of time, consult Nippon Pulse for more information.

³ All winding parameters listed are measured line-to-line (phase-to-phase).


Thermal Specs	S080D	S080T	\$080Q
Max Phase Temperature ⁴	135°C (275°F)		
Thermal Resistance (Coil) (K _a)	33.2°C/W	22.9°C/W	17.3°C/W

⁴ The standard temperature difference between the coil and the forcer surface is 10°C.



www.nipponpulse.com

Forcer Specs	S080D	S080T	5080Q
Forcer Length (A)	40mm (1.57in)	55mm (2.17in)	70mm (2.76in)
Forcer Width	20mm (0.79in)		
Forcer Screw Pitch (P)	34mm (1.34in)	49mm (1.93in)	64mm (2.52in)
Forcer Weight	0.05kg (0.11lbs)	0.06kg (0.13lbs)	0.08kg (0.18lbs)
Gap	0.50mm (0.02lbs)		
Screw	M3		
Tightening torque	0.63 Nm		


Hall Effect Specs

Sensor Cable Specs		
Wire Type	UL 758	
Wire AWG 28		
VCC	Red	
GND	Black	
Sensor 1	White	
Sensor 2	Blue	
Sensor 3	Yellow	
No Connection No wire		

The bending radius of the sensor cable should be R10.72 mm (wire diameter 1.38 * 8) as suggested by the wire manufacturer. This radius should be maintained.

FG/FGA Type Motor Cable

www.nipponpulse.com

Shaft Length (L)

Stroke	S080D	S080T	S080Q
25	85mm (3.3in)	100mm (3.9in)	115mm (4.5in)
50	110mm (4.3in)	125mm (4.9in)	140mm (5.5in)
100	160mm (6.3in)	175mm (6.9in)	190mm (7.5in)
150	210mm (8.3in)	225mm (8.9in)	240mm (9.4in)
200	260mm (10.2in)	275mm (10.8in)	290mm (11.4in)

Shaft Mass

Stroke	S080D	S080T	S080Q
25	0.02kg (0.05lb)	0.03kg (0.06lb)	0.03kg (0.07lb)
50	0.03kg (0.07lb)	0.04kg (0.08lb)	0.04kg (0.09lb)
100	0.05kg (0.11lb)	0.05kg (0.12lb)	0.06kg (0.13lb)
150	0.07kg (0.15lb)	0.07kg (0.16lb)	0.08kg (0.17lb)
200	0.08kg (0.19lb)	0.09kg (0.2lb)	0.1kg (0.21lb)

Shaft Diameter (D) - 8mm ±0.1

Total Length (L)=Stroke (S)+Forcer Length (A)+(Support Length (L2)x2)

Additional stroke lengths are available (up to 230mm for S080D and up to 215mm for S080T). Contact Nippon Pulse for more information.

Forcer Spacing Distance

Spec	S080T	S080Q
Forcer Spacing Distance	5n	าm
Pole (N/S) Distance	15mm	
Forcer Length	55mm	70mm
Flip Forcers	No	Yes

Tandem S080D forcers are possible, but are equivalent to one (1) S080Q forcer and thus are not listed above.

Tandem Forcer

Standard Lead Wire

Wire Type	UL 1430
Wire AWG	28
U Phase	Red
V Phase	White
W Phase	Black

300mm lead wire bare leads. The bending radius of the motor cable should be 10.72 mm as suggested by the wire manufacturer.

Support and Bending

Stroke	Support Length (L2)	Max. Bending
All	10mm	0.05mm

Connector (Motor Cable)

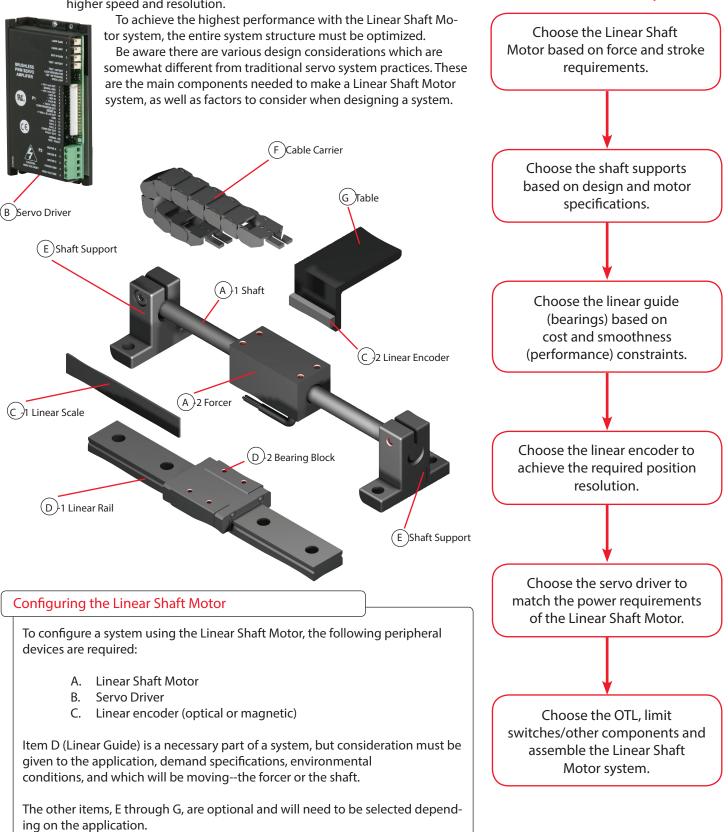
Receptacle Housing	XMR-03V
Plug Housing	XMP-03V
Retainer	XMS-03V
Pin Contact	SXM-001T-P0.6
Socket Contact	SXA-001T-P0.6

To be installed by the user.

FGA/CE Type Lead Wire

Ground Wire	CE
Wire Type	UL 1330
Wire AWG	24
U Phase	Red
V Phase	White
W Phase	Black

300mm lead wire bare leads. The bending radius of the motor cable should be 16.96mm as suggested by the wire manufacturer. FG type with insulating sheet between coils and case. Meets all requirements of EN60034-1 (1998).


Not all motors on this datasheet have received a CE Declaration of Conformity. Only the standard S080D, S080T and S080Q motors have been certified to CE standards. The motors and motor options with the following designations have not received a CE Declaration of Conformity, and as such are designated FGA: S080D-1S, S080Q-2S, S080Q-2S, S080Q-1S, any S080 motor with Hall Effects.

Note: Metric units guaranteed. Imperial (United States customary) units are calculated.

For assistance in selecting the best motor for your application, contact Nippon Pulse to speak with an applications engineer. 1-540-633-1677

Nippon Pulse Your Partner in Motion Control

The design of the Linear Shaft Motor allows you to replace traditional linear motion systems, such as a standard ball screw, with the Linear Shaft Motor and achieve higher speed and resolution.

System Design

Steps to putting together a

Linear Shaft Motor System