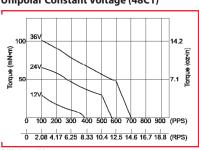
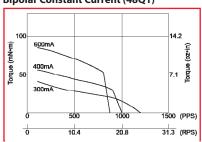
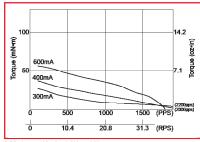


Specifications


Specification	Unit	PFC42H-48						
Type of Winding		Unipolar Bipolar						
Excitation Mode*		Full step (2-2)						
Step Angle	0	7.5 ±5%						
Steps Per Revolution*		48						
Rated Voltage	V	12	5	12	5			
Resistance	Ω	70 ±7%	12 ±7%	70 ±7%	12 ±7%			
Inductance	mH	39	6.6	80	13			
Holding Torque	mN·m	50	50	70	70			
Rotor Inertia	kg·m²	27 x 10 ⁻⁷						
Starting Pulse Rate*	pps	290						
Slewing Pulse Rate*	pps	320						
Operating Temp. Range	°C	-30 to +80						
Temperature Rise*	°C	55						
Weight	g	160						

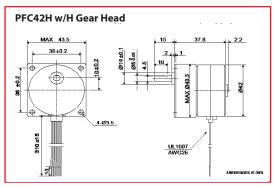
Torque Curve (pull-out torque)*


Bipolar Constant Voltage (48P1)


Unipolar Constant Voltage (48C1)

Bipolar Constant Current (48Q1)

Unipolar Constant Current (48D1)



All tin-can motor specifications are based on full-step constant voltage operation

Magnet type: Anisotropic

Note: Torque curves are for reference only and are not guaranteed.

Dimensions of Geared Model

Gear Ratio	6/25	1/5	3/25	1/10	2/25	1/15	3/50	1/20	1/25
Ordinary Gear Strength		200m	nN∙m			2	250mN∙m	ı	
Destruction Gear Strength	600mN·m			750mN·m					
Gear Ratio	1/30	1/50	1/6	0 2/	125	1/75			

Gear Ratio	1/30	1/50	1/60	2/125	1/75	
Ordinary Gear Strength	300mN·m					
Destruction Gear Strength	900mN·m					

Gear Ratio	1/100	1/120	1/125	1/150	1/200	1/300	
Ordinary Gear Strength	400mN·m						
Destruction Gear Strength	1200mN·m						