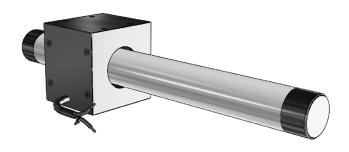


Visit nipponpulse.com to download 3D CAD drawings and 2D prints of this motor.

Electrical Specs	L350SS	L350DS	L350TS	L350QS
Continuous Force ¹	24N (5.4lbs)	43N (9.7lbs)	55N (12.4lbs)	74N (16.6lbs)
Continuous Current ¹	2.0Arms	1.8Arms	1.6Arms	
Acceleration Force ²	95N (21.4lbs)	170N (38.2lbs)	222N (49.9lbs)	298N (67.0lbs)
Acceleration Current ²	7.8Arms	7.3Arms	6.4Arms	
Force Constant (K _f)	12N/amp (2.7lbs/amp)	23N/amp (5.2lbs/amp)	35N/amp (7.9lbs/amp)	47N/amp (10.6lbs/amp)
Back EMF (K _e)	4.0V/m/s	7.7V/m/s	12V/m/s	16V/m/s
Resistance 25°C ³	2.7Ω	5.3Ω	7.9Ω	11Ω
Inductance ³	2.9mH	4.4mH	6.7mH	8.7mH
Electric Time Constant	1.09ms	0.83ms	0.85ms	0.82ms
Fundamental Motor Constant (K_m)	7.42N√W	10.08N√W	12.28N√W	14.31N√W
Magnetic Pitch (North-North)	60mm (2.36in)			

Is this the proper Linear Shaft Motor for your application? Use our SMART sizing program to assist in your decision.

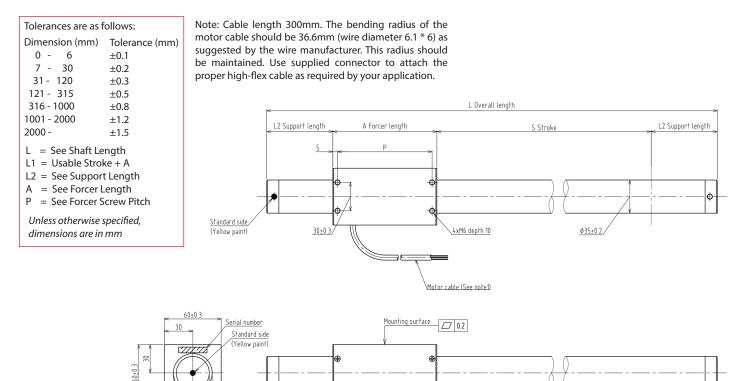
This motor can be customized to fit your application demands; contact your application engineer for more information.


¹ Based on a temp rise of coil surface of 110°K over 25°C ambient temperature stalled forcer, and no external cooling or heat sinking.

² Can be maintained for a maximum of 40 seconds. Higher forces and current possible for short periods of time, contact Nippon Pulse for more information.

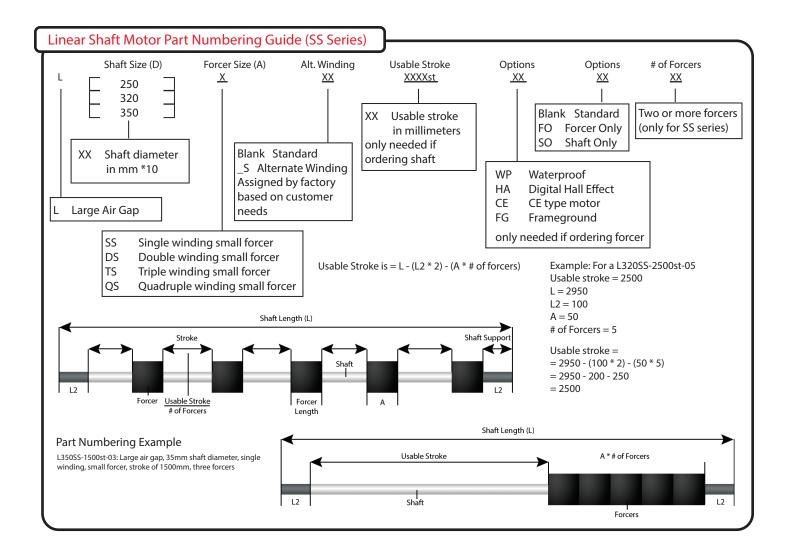
³ All winding parameters listed are measured line-to-line (phase-to-phase).

Thermal Specs	L350SS	L350DS	L350TS	L350QS	
Max Phase Temperature ^₄	135°C (275°F)				
Thermal Resistance (Coil) (K _q)	11°C/W	6.2°C/W	5.4°C/W	4.1°C/W	

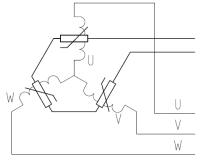

⁴The standard temperature difference between the coil and the forcer surface is 40°C.

Bus Voltage

Forcer Specs	L350SS	L350DS	L350TS	L350QS	
Forcer Length (A)	50mm (1.97in)	80mm (3.15in)	110mm (4.3in)	140mm (5.51in)	
Forcer Width	60mm (2.36in)				
Forcer Screw Pitch (P)	40mm (1.57in)	70mm (2.76in)	100mm (3.94in)	130mm (5.12in)	
Forcer Weight	0.34kg (0.75lb)	0.56kg (1.23lb)	0.78kg (1.72lb)	1.0kg (2.20lb)	
Gap	3mm (0.12in)				

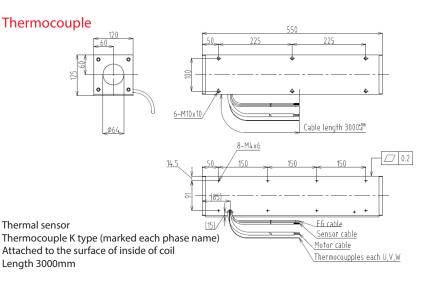


(9


(21)

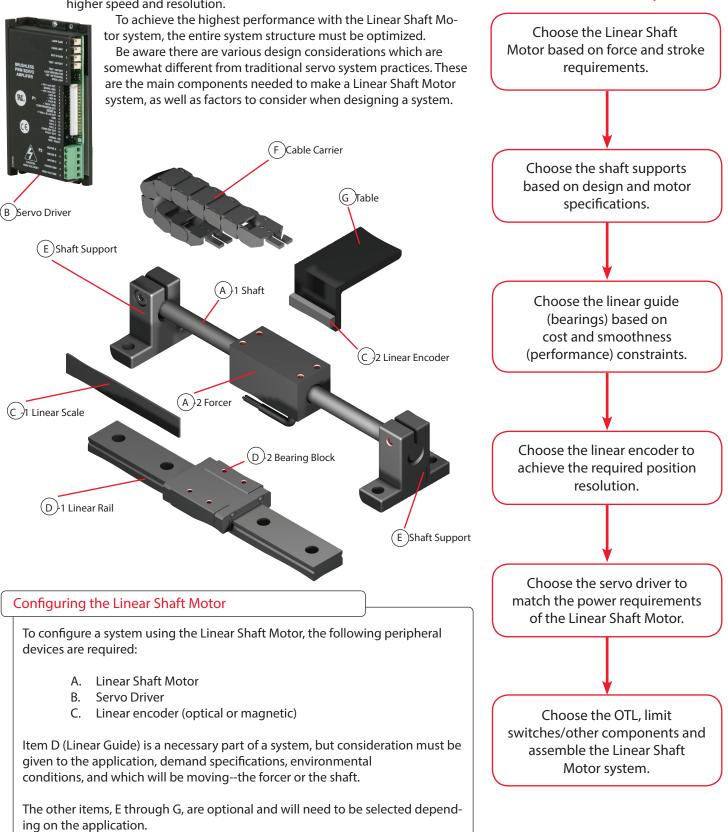
3 GAP

Ø41



THM Option

<u>Circuit Diagram</u>


 Thermistor PTCSL20T071DBE(Vishay)

For assistance in selecting the best motor for your application, contact Nippon Pulse to speak with an applications engineer. 1-540-633-1677

Nippon Pulse Your Partner in Motion Control

The design of the Linear Shaft Motor allows you to replace traditional linear motion systems, such as a standard ball screw, with the Linear Shaft Motor and achieve higher speed and resolution.

System Design

Steps to putting together a

Linear Shaft Motor System